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c,, c2, c3, CA. c5, constants defined in text; 
self-preserving functions defined by equa- 
tions (10) and (31); 
self-preserving functions defined by equa- 
tions (2) and (22); 
self-preserving functions defined by equa- 
tions (3) and (23); 
self-preserving functions defined by equa- 
tions (10) and (31); 
self-preserving functions defined by equa- 
tions (10) and (31); 
scaling lengths for the velocity and the tem- 
perature, respectively; 
exponent for the x variation of U,, equation 

(15); 
exponent for the x variation of a,,, equation 

(16); 
exponent for the x variation of 1,, equation 
(16) ; also kinematic fluctuating pressure, 
equation (9) ; 
u2 + 2 + w2 ; 
mean temperature ; 
mean velocities in the x and 4’ directions; 
free stream velocity ; 
fluctuating velocities in the x, r and z 
directions ; 
velocity scale ; 
axial distance ; 
distance normal to axis of symmetry. 

Greek symbols 

a, 

al,P,7, 
i:, I:,,, 

1, 
4, 
e 0, 
v, 

Others 

thermal diffusivity of fluid ; 
exponential indices defined in text; 
mean dissipation of turbulent energy, equa- 
tion (9) and of temperature, equation (31); 
?‘!I, ; 
4’/1,; 
temperature scale; 
kinematic viscosity of fluid. 

prime, denotes derivative with respect to the argu- 
ment of the function ; 
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overbar, denotes time average. 

GARTSHORE and Newman [l] have shown that the approx- 
imately self-preserving isothermal jet or wake in zero 
pressure gradient is only a particular example of a class of 
approximately self-preserving flows in pressure gradients. 
Necessary conditions for self-preservation in both two- 
dimensional and axisymmetric flows were obtained from the 
mean flow momentum equation and the turbulent energy 
equation. Townsend [2] showed that if small amounts of heat 
are present in a turbulent flow that is developing in self- 
preserving fashion, the temperature distribution may also be 
of self-preserving form. In particular, when the velocity 
increment in the case of a jet or the deficit in the case of a wake 
is proportional to the velocity U, of the streaming flow, the 
development is possible only if the temperature scale B0 is 
proportional to the velocity increment (or deficit). In this 
note, it is shown that the temperature length scale is 
proportional to the velocity length scale 1, for the case of a 
slightly heated two-dimensional (or axisymmetric) jet and 
wake in which the velocity increment or deficit is small 
compared with U,. Also, the streamwise variation of B0 is 
obtained and the condition for exponential variation of 0, 
will be made precise. With U, _ .xm, the bounds on m for a 
two-dimensional flow are given [1] by - l/3 im<O. In 
particular, when m = - l/3, the length scale I, varies linearly. 
the velocity scale U 1 varies as Y ’ I3 and B0 varies as x 2 3. In 
a zero pressure gradient (e.g. Newman [3]), I, r; ,~i’~, 
a0 r Y I’*. It is shown here that, for the latter case, B0 is 
proportional to ua. 

The mean momentum equation for a two-dimensional flow 
can be approximated to 

(li 

Using Townsend’s [2] notation, the self-preservation forms 
for the velocity field are assumed to be given by 

U = U, + auf‘(s), (-3) 

UD = u&). (3) 

The normal velocity V is obtained by Integrating the 
continuity equation (assuming constant density), viz. 

For small perturbation jets and wakes, i.e. when /u. 1 cc U,, 
(1) may be approximated, after substitution of (2). (3) and (4) 
and neglecting terms of order O((u,/U,)‘), to 
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When the Reynolds number t&/v is large, the right side of (5) 
may be neglected ; consequently the coefficients Ci and C2 are 
given by 

Cl = $ ~(u,Li,) = const. 
0 

d 
C, = u;idx(l,U,) = const., (7) 

where the constancy is required for (5) to be consistent with 
the assumption of self-preservation. In particular, integration 
with respect to q of the reduced form of the mean momentum 
equation (5) leads to (see Cl]) 

c, + c2 = 0 (8) 

with the assumption that f approaches zero more quickly 
than q-r as 1 q 1 becomes large. 

The turbulent kinetic energy equation may be written as 

U;g)+ Vgg) 
-au a q2u - 

+uu-+- -+pu +&=o. 
c > 

(9) 
av ay 2 

Assuming self-preserving forms of the type 

4% - 
1 + pu = &(rl), 

4 
f: = 7 e(v), 

Cl 1 

(10) 

(9) can be approximated to, neglecting terms of O((U,/U,)~), 

2C3k - C&c’ +f’g + h’ + e = 0, (11) 
where 

~,UI duo 
C3 = 2 - = const., 

u0 dx 
(12) 

as required if the self-preserving distributions of (10) are to 
satisfy (9). 

Equations (6), (7) and (12) can be combined to yield 

$&i+(&l)U;r@)l=o, (13) 

where 

Cl - G 
m=C,- (14) 

When C2 # C3, (13) admists a power-type solution 

u, - (x - ‘xO)rn, (15) 

where x0 can be identified as the hypothetical origin of the 
flow. Without loss of generality, x,, will be put to zero in the 
subsequent development. Also, with the assumption that 
Cz # C,, it can be easily shown that I, and u,, follow power- 
law distributions 

where 

110 - x”, lo - xp (16) 

*Townsend [2] points out that ifthe ambient fluid is at rest, 
the ambient temperature need not be constant and, for self- 
preservation of a simple jet, the ambient temperature gradient 
could vary as a power of x. 

G c2 + c, - c, 
n=C,- P= c, - cs (17) 

The physical constraint (8) requires that m, n, p are related 
through 

n = -&I + 1) and p = $(l - 3m). (18) 

Gartshore and Newman [l] indicated that the exponent m 
lies in the range 

-flmlO. 

The lower limit (which actually corresponds to the exactly 
self-preserving wake or jet for which u0 - U,) is obtained 
from the requirement that 1 u. 1 /U, should not increase in the 
x direction. The upper limit, which corresponds to a zero 
pressure gradient, was obtained by requiring the Reynolds 
number u,l,,/v not to decrease with x. As pointed out by 
Gartshore and Newman [ 11, this latter limit is not likely to be 
restrictive for practical purposes. 

Of interest is the case C2 = C3, where an exponential 
solution of (13) is possible 

U, - ezlx (19) 

where x1 is an arbitrary constant. For this case, I, and u0 also 
follow an exponential scaling 

8x &l-e t I, - eyx (20) 
where the constraint C, = -C, = -C, requires that 

fi = -fcil and y = -tar. (21) 

This exponential behaviour has not received much attention 
from an experimental point of view. 

When only a small amount of heat is added to the fluid, the 
dynamics of the flow should not be affected and the previous 
conditions on U,, u,, and 1, for a self-preserving development 
of the flow remain, of course, unaltered. It is assumed that the 
mean temperature T relative to the ambient temperature 
(here assumed constant* with respect to x) of the external 
stream has a self-preserving form 

7-= &Mi). (22) 

Note that we do not a priori require the temperature length 
scale l@(x) to be proportional to the velocity length scale I,(x). 

With the heat flux vt7 given by 

ue = ~oeog,(o, 
the mean enthalpy equation 

leads to, neglecting terms of O((u,/U,)‘), 

(23) 

(24) 

C4hK) - G3-xi) + sm = 0 (25) 

when the Pblet number u,l,/a is large. 
For self-preservation, C4 and C, must be constant. In- 

tegration of equation (25) across the flow leads to, assuming 
thatf@([) approaches zero more rapidly than c-i at large I(’ I, 

c4 + cs = 0. (26) 

For the case where U,, v. and lo admit power-type 
solutions (C, # C,) 

le - xp, e, - x=~, (27) 

where p is given by equation (17) and the physical constraint 
(26) requires that 



1162 Shorter Communications 

o,, - Y 
1 Z,m- I, (28) 

Thus the temperature length scale is proportional to the 
velocity length scale I,(x), and 0, - (u,U,). 

The lower and upper limits of m correspond to 0, - Y ’ A 
and B0 - x-Ii*, respectively. This latter variation coincides 
with that which applies to a heated plane turbulent jet (e.g. 
Davies et al. [4]) for which 1”( - 1,) varies approximately 
linearly. It should be noted that Townsend’s conclusion [2] 
that the temperature scale must be proportional to the 
velocity scale (6’” - uO) is incorrect due to an erroneous 
statement of the conservation of momentum (for 1 u. 1 -x CT,). 

For the case where C, = C,, Li,, a0 and I, admit exponen- 
tial type solutions and it can be shown that 

[(I - e - 3 2(0,X) _ 1 01 (29) 

0” - e ’ 2(=~x) c ,,,[J,. WV 

Again, the conclusions of the previous paragraph remain 
valid for this case. 

It is worthwhile to enquire whether the equation for the 
intensity of temperature fluctuation analogous to equation 

(9) is satisfied by the self-preserving distributions of 7: a0 and 

(31) 

Note that, since 1, - I,, no distinction is now made between [ 

and n. The equation for Oz.!2 

reduces to, neglecting terms of O((u,;‘U, )l), 

2C,k,, - czr& + $& + /I;, + eR = 0. 

Clearly. no new constraint emerges from (32) and the 
equation of the mean squared temperature fluctuation is 
satisfied by the assumed self-preserving forms in (31). 

For an axisymmetric small-perturbation turbulent jet it is 
easy to show, using an approach analogous to that developed 
in [I] for the treatment of flow without heat transfer, that 

since ([I]) 

and -z 3 ug-Y , irrespective of the value of M 
(- 5 2 m I - f). There seems to be little if no experimental 
evidence available to support equations (28) or (33). The data 
obtained by Antonia and Bilger [5] in a heated round jet in a 
coflowing stream with no pressure gradient (the jet to 
external stream velocity ratio was 3) indicate that 0, 6 .Y- ’ 

while (33) yields fIO - x _ *‘3. In this experiment, m is zero and 
therefore outside the range --$ I M I -f while the con- 
dition 1 u. 1 << U, is not satisfied. At the last measurement 
station (the flow was still turbulent) a,, z 0.15 U,. 
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\OMENCI.Al’URE 

interfacial area per unit mixture volume; 
channel cross-sectional area ; 

distribution coefficients (defined in text); 

body force on k-phase per unit mixture volume, 
z-component ; 
frictional drag force on k-phase per unit mixture 
volume due to channel wall ; 
body force per unit mass of k-phase; 


